头部背景图片

What is the function of an air conditioning pump? How to choose an air conditioning pump?

2025-08-04

In the scorching summer heat, air conditioning has become an indispensable appliance in our lives. It creates a cool and comfortable environment, and behind this, the air conditioning pump plays a vital role. So, what is the function of an air conditioning pump?

Detailed Explanation of the Function of an Air Conditioning Pump

 

I. Basic Concepts of Air Conditioning Pumps

The air conditioning pump, also known as an air conditioning circulation pump or chilled water pump, is a key component in an air conditioning system. It is primarily responsible for circulating the coolant (usually water or a glycol solution) between the condenser, evaporator, and other related components to ensure the proper operation of the air conditioning system.

Air conditioning cooling pump

II. Working Principle of an Air Conditioning Pump

The working principle of an air conditioning pump is based on the basic principle of a centrifugal pump. When the motor drives the pump shaft to rotate, the impeller inside the pump rotates accordingly, generating centrifugal force. This centrifugal force draws coolant from the pump's inlet and pushes it toward the outlet, creating a continuous circulation flow. In this way, the coolant absorbs heat from the room and carries it to the outside for discharge, achieving the cooling effect of the air conditioner.

 

III. The Function of an Air Conditioning Pump in an Air Conditioning System

1. Circulation: The air conditioning pump is the power source for the circulation of coolant in the air conditioning system. It continuously transports coolant from the condenser to the evaporator and back to the condenser, ensuring continuous and efficient heat transfer within the system.

2. Refrigeration: In the evaporator, the coolant absorbs heat from the room and evaporates, achieving a cooling effect. The air conditioning pump ensures unimpeded flow of coolant in the evaporator, enabling the cooling process to proceed smoothly.

3. Energy Saving: The design and optimization of the air conditioning pump is crucial to improving the energy efficiency of the air conditioning system. Through reasonable pump speed control and design optimization, energy consumption can be reduced and the overall efficiency of the system can be improved.

Central air conditioning water pump

IV. Air Conditioning Pump Selection and Maintenance

When selecting an air conditioning pump, it's important to consider parameters such as system size, flow rate, and head to ensure the pump meets system requirements. Regular maintenance and servicing are also crucial for long-term, stable operation of the air conditioning pump. This includes cleaning the pump body, inspecting seals, and replacing worn parts, all of which can extend the pump's lifespan and improve system reliability.

 

What is the function of an air conditioning pump? As an integral component of the air conditioning system, the importance of the air conditioning pump is self-evident. A thorough understanding of the operating principles and functions of the air conditioning pump not only helps us better understand and use the air conditioning system but also provides strong support for routine maintenance and servicing. In the future, with the continuous advancement of technology, the performance and efficiency of air conditioning pumps will continue to improve, bringing greater convenience and comfort to our lives. Shanghai Sanli Pump Industry (Group) Co., Ltd. is a technology-based enterprise specializing in the research and development, manufacturing, installation, and commissioning of secondary water supply equipment. We provide customers with cost-effective automatic water supply equipment specifically designed for high-rise buildings, suitable for residential areas of varying sizes and floor levels. The company specializes in the production and operation of variable frequency constant pressure water supply equipment, constant pressure water supply equipment, non-negative pressure variable frequency water supply equipment, secondary water supply equipment, box-type non-negative pressure pump stations, fire-fighting equipment, sewage pumps, water tanks, and pipeline clean water pumps. It is a high-quality non-negative pressure water supply equipment manufacturer.

How Do Diesel Generators Work and Where Are They Used Most?

2025-08-01

You’ve probably come across a industrial diesel generators before, even if you didn’t realize it at the time. That low, constant hum near a hospital during a blackout, or that chunky machine on a construction site powering everything from drills to floodlights? Yep, that’s likely a diesel genset. But how do they actually work? And why are they still everywhere—even in the age of solar panels and lithium batteries?

Let’s take a closer look, and keep it simple.

So, How Do Diesel Generators Actually Work?

Okay, think of a diesel generator as a combo: one part is the engine (which burns diesel fuel), and the other part is the alternator (which turns movement into electricity). When the engine runs, it spins a shaft—this movement gets passed into the alternator, which uses magnetic fields to create electric current.

Sounds kind of magical, but it’s just physics doing its thing.

Now, the process begins with air being compressed inside the engine cylinder. When diesel fuel is sprayed in, it ignites from the heat caused by compression alone—no spark plug necessary. This tiny explosion pushes the piston down, which, in turn, rotates a crankshaft.

That’s the mechanical part done.

From there, the alternator—basically a big electromagnetic rotor—spins and produces electricity. The result? Usable power that can light up a building, run heavy tools, or even keep a data center going.

But... Why Diesel? Isn’t That Dirty?

It’s true that diesel isn’t the cleanest energy source, and that topic gets a lot of attention lately. But here’s the thing: diesel engines are really efficient. They can run longer on the same amount of fuel compared to gasoline engines, especially under high loads. They also last longer, generally speaking.

Plus, modern diesel gensets are getting cleaner. Emission standards are tighter now. Some units even include filters or tech that helps reduce particulate matter and NOx.

So yeah, not perfect—but reliable, which is sometimes more important, especially during emergencies.

Where Do People Use Diesel Generators Most Often?

I’ve seen these machines in more places than I can count. And their uses go far beyond just backup power. Here’s a breakdown—though this list isn’t exhaustive, of course.

Hospitals

Let’s start here because it’s critical. When the power goes out, life-support equipment can’t stop for even a minute. Most hospitals have big diesel gensets in their basements or rooftops. The second the grid fails, these fire up automatically. Pretty impressive.

Construction Sites

Until a building gets connected to the power grid, workers still need electricity—for cranes, mixers, lighting, and more. Diesel gensets are portable and powerful enough to handle all that.

Data Centers

Ever heard of “uptime guarantees”? Data centers live and die by them. If the grid drops, backup diesel-powered generator kick in to avoid costly downtime and potential data loss. They may test-run weekly just to stay ready.

Rural or Remote Areas

In places where power infrastructure doesn’t reach—or is too unstable—diesel becomes the main power source, not just a backup. I’ve seen small clinics, remote schools, even farms that rely entirely on generators for daily needs.

Outdoor Events & Festivals

From weddings in vineyards to three-day music festivals in open fields, everything runs on generators. Lighting, food stalls, sound systems—you name it.

Despite the rise of cleaner alternatives, silent diesel generator remain a core part of our energy backup infrastructure. The newer ones are quieter, more efficient, and better for the environment than their predecessors.

They might not be the future forever—but they’re absolutely essential for now.

How Silent Generators Keep Ghana's Production Lines Running During Power Disruptions

2025-08-01

Ghana’s industrial heartbeat thrives on reliable energy. Yet grid instability remains a critical challenge, costing manufacturers productivity and revenue. When one of Accra’s leading metal fabrication plants faced escalating downtime, they turned to Besten. We didn’t just deliver a generator – we engineered resilience. This is how a ​500kW silent-type diesel generator​ with a robust ​Weichai engine​ became their operational lifeline, proving that intelligent power solutions can transform Africa’s industrial landscape.

 

The Reliability Equation: Beyond Basic Power

Traditional generators often fail Africa’s unique demands. Humidity corrodes components. Noise regulations restrict urban deployment. Intermittent operations strain engines. Our Ghana client needed more than kilowatts – they needed ​predictability.

 

Besten’s solution combined three key pillars:

1.Weichai Engine Durability: Tier 3-compliant technology optimized for high-ambient performance and 30% lower fuel consumption than older models.

2.Silent Operations: 75 dB(A) soundproofing allowed installation 100m from residential zones – impossible with standard generators.

3.Seamless Integration: Auto-transfer switches synchronized with existing systems, eliminating even 5-second interruptions during grid failure.

 

Why Silence Matters: Industry Meets Community

Africa’s industrial corridors often border communities. Noise pollution strains relationships and triggers shutdowns. Besten’s acoustic canopy technology ensured compliance with Ghana’s EPA standards while protecting social license to operate. The difference was tangible:

1.Plant workers could communicate without shouting

2.Nearby schools reported no disruptions

3.Vibration dampeners prevented structural resonance

This reinforced a vital truth: sustainable industry requires solutions respecting both production lines and neighborhoods. 

 

The Weichai Advantage in High-Stakes Scenarios

When the generator faced its ultimate test – an 11-hour grid failure during peak production – the Weichai engine delivered flawless performance. Engineered for continuous duty cycles, it maintained voltage stability within 0.5% variance under full 500kW load. Remote monitoring sensors gave engineers real-time diagnostics, preventing 3 potential issues before escalation. Post-event analysis showed zero derating despite 37°C heat – critical for African installations where temperature derating typically reduces usable capacity by 15-20%.

As Besten ships solutions from Nigeria to Mozambique, we’re standardizing features proven in Ghana: locally adaptable engineering, full-scope logistics, and partnerships with tier-one engine suppliers like Weichai. Because empowering Africa’s factories strengthens its economic sovereignty – one silent, reliable kilowatt at a time.

 

 

How Tire Recycling Lines Power a Rubber Revolution

2025-08-01

Discarded tires pose a massive global challenge, contributing to fire risks, health hazards, and landfill overflow. Fortunately, advanced ​Tire Recycling Lines​ offer a powerful solution, transforming these end-of-life burdens into valuable resources and driving a true circular economy.

 

The Journey: From Waste to Resource

Modern Tire Recycling Lines process tires through a precisely engineered sequence:

1.Primary Shredding:​​ Whole tires are fed into powerful shredders, equipped with heavy-duty ​hammers or shears, breaking them down into manageable fragments.

2.Steel Liberation:​​ Strong magnets efficiently extract embedded steel belts and bead wires. This recovered steel is sent for ​recycling.

3.Secondary Granulation:​​ The rubber shreds move to high-speed granulators ​that​ further reduce them into smaller rubber chips.

4.Fiber Separation:​​ Advanced separation systems meticulously remove leftover textile fibers, ​ensuring the purity of the rubber stream.

5.Crumb Production:​​ Specialized ​cracker mills​ shear and grind the chips down into versatile ​rubber crumb, ranging in size from coarse granules to fine powder.

6.Final Refinement:​​ Sophisticated screening and separation techniques ensure the crumb is contaminant-free and optimized for its ​next application.

 

The Value of Recycled Rubber​

Ground Rubber:​​ Widely used as safe, shock-absorbing infill for ​artificial turf sports fields​ and ​playgrounds, and in durable ​rubber tiles​ or ​paving. It's also a key component in ​rubberized asphalt, creating quieter, longer-lasting roads.

Manufacturing:​​ Crumb finds its way back into ​new molded rubber products​ and even ​industrial components, reducing the need for virgin materials.

 

Why Recycling Matters

Tire recycling lines deliver significant benefits:

​Environmental Protection:​​ Diverts tires from landfills, prevents fire hazards, and reduces mosquito breeding grounds.

​Resource Conservation:​​ Recovers valuable steel and high-quality rubber, saving raw materials and energy compared to producing new materials.

​Economic Opportunity:​​ Creates jobs and provides industries with cost-effective, sustainable feedstock.

 

Conclusion​

Tire recycling lines are essential technological solutions for tackling the global tire waste crisis. By efficiently recovering steel and transforming rubber into versatile crumb, they convert a significant environmental burden into valuable commodities. ​This process truly gives tires a productive and sustainable second life, powering everything from safer playgrounds to longer-lasting roads.​​ It's a powerful testament to innovation enabling a more circular future.

The Remarkable Recycling Journey of Aluminum Cans

2025-08-01

Since their invention in 1959, aluminum cans have revolutionized packaging with their strength, affordability, lightweight design, and aesthetic appeal. Today, they are ubiquitous across industries—from beverages to cosmetics. But what truly sets them apart is their extraordinary recyclability. Recycling aluminum cans isn’t just eco-friendly; it’s a powerhouse of efficiency. For example, recycling one ton of aluminum saves ​14,700 kg of CO₂ emissions​ and uses only ​4.86% of the energy​ required to produce new aluminum. Let’s break down how this process works and why it matters.

 

Step-by-Step Recycling Process

1.Crushing:
Used cans are first crushed to break down their original shape. This step prepares them for paint removal and increases surface area for efficient melting.

2.Paint Removal:

Crushed cans enter a de-painting kiln, where high temperatures (or chemical agents) strip away paint, glue, and coatings. This prevents toxic fumes during melting and ensures pure aluminum output.

3.Compacting:

Thin, crushed cans are compressed into dense bales. This reduces surface area, minimizing oxidation and metal loss during melting. A single bale can weigh over 500 kg.

4.Smelting:

Bales are melted in furnaces at ​700–750°C, transforming into molten aluminum. Impurities are skimmed off, and alloys (e.g., magnesium or copper) may be added to meet product specifications.

 

5 Key Uses for Recycled Aluminum Cans

1.Aluminum Ingots:

Smelted aluminum is cast into ingots, resembling "cooked aluminum." These serve as raw material for new cans or other products, reducing reliance on mined bauxite.

2.Alloy Production:

Recycled aluminum is blended into alloys like ​5052 (can lids)​​ or ​5182 (pull tabs)​. Its high magnesium content makes it ideal for strong, corrosion-resistant alloys.

3.Mixed Aluminum Ingots:

Lower-grade scrap aluminum is combined with recycled cans to produce hybrid ingots for non-critical components like automotive parts.

4.Steel Deoxidizers:

Aluminum powder from cans removes oxygen during steel production, improving metal purity and reducing defects in final products.

5.Low-Grade Aluminum Powder:

Decoated cans are processed into powder for fireworks, paints, or construction materials.

 

Conclusion: Small Can, Big Impact

Aluminum cans are the superheroes of recycling—infinitely reusable without quality loss. By tossing cans into the recycling bin, we power a cycle where waste becomes resources, emissions plummet, and packaging stays sustainable.

 

USTEU Investment, construction and operation, applicable in multiple scenarios

2025-08-01

With the rapid development of the new energy vehicle industry, the demand for charging piles is growing. Whether it is a shopping mall, a community or a charging station, efficient and reliable charging equipment is indispensable. Today, we would like to introduce to you a smart charging pile designed for the investment, construction and operation of charging stations - the Keda Nengtong 7kW operating AC charging pile.

 

USTEU Investment, construction and operation, applicable in multiple scenarios

 

1. Shopping malls

Introducing USTEU AC charging piles in the shopping mall parking lot to provide charging convenience for customers. While customers are shopping and enjoying food, their vehicles can also be charged simultaneously. Achieving seamless connection between parking and charging saves customers’ time, improves the comprehensive service level of the shopping mall, and can effectively drive customer flow growth and promote consumption vitality.

 

 

2. Community

Installing USTEU AC charging piles in the community can meet the daily charging needs of owners and solve the problem of charging electric vehicles. It can improve the level of community supporting facilities and enhance owner satisfaction.

3. Office Parks

Installing charging piles in office parks can provide convenient charging services for employees, solve the charging problem of commuting electric vehicles, improve employee happiness, and also attract more companies to settle in.

 

4. Tourist attractions

Installing USTEU charging piles in parking lots of tourist attractions can provide charging services for electric vehicle users who drive themselves, improve the service level of the scenic area, and attract more tourists.

 

Disposable paper tableware influence

2025-08-01

Xiamen Yongcheng Equipment CO.,LTD is professional for disposable degradebale products.

And it affect our life .Paper cups,paper bowl ,paper pulp food container..

Introducing our revolutionary Disposable Paper Tableware - the perfect combination of convenience and sustainability!

Say goodbye to traditional tableware and hello to a more eco-friendly option that only makes your life easier but also helps protect the environment. Our Disposable Paper Tableware is not just a trend, it's a lifestyle choice that will have a positive impact on the world around us.

From stylish paper plates to durable paper cups, our range of disposable tableware is designed to meet all your needs. Whether you're hosting a party, enjoying a picnic in the park, or simply looking for an easy clean-up solution, our products are here to make your life simpler and more convenient.

Ditch the hassle of washing dishes and switch to our Disposable Paper Tableware today. Join the movement towards a greener future and experience the benefits for yourself. Make a statement with your choice and show the world that you care about both style and sustainability. Choose our Disposable Paper Tableware and let it function on life in the most efficient and impactful way possible.

 

How does the anodizing process work ?

2025-08-01

1. Preparation and cleaning: A uniform and smooth surface is essential for the application of the anodized layer. You can achieve this through mechanical treatment and chemical cleaning. Mechanical surface treatment such as grinding and polishing that remove surface irregularities and defects. While alkaline or acid cleaning removes grease, oil, dirt and any other contaminants, followed by rinsing with deionized water to remove residual cleaning agents. Therefore, etching can be further cleaned to peel off the thin surface layer and create a uniform matte effect.

 

2. Electrochemical process: The part to be anodized next becomes the anode, and the other highly conductive metal becomes the cathode, and both are immersed in the electrolytic cell. When current flows through this electrolytic device, the anode oxidizes and loses electrons. During the electrolysis process, the metal surface is oxidized to form a dense oxide film. This oxide film is very hard and can protect the metal from further corrosion.

 

3. Coloring (optional): After the oxide film is formed, it can be dyed to give the metal surface a different color.

 

4. Sealing: The corrosion resistance and wear resistance of the oxide film can be further enhanced by sealing.

 

Contact Kezhen to get more products information.

What is the best way to cut thin stone veneer without cracking?

2025-07-30

Thin stone veneers are widely used in modern architecture and interior design, they are both aesthetically pleasing and practical, but they are prone to cracking during the cutting process.

Why do thin stone veneers tend to crack during cutting?

Thin stone veneers (usually 1-3cm thick) are prone to cracking during cutting due to their thinness. The main reasons for this are: the brittleness of the material itself, incorrect choice of cutting tool, incorrect cutting technique, lack of proper support, cutting too fast or under too much pressure.

The best choice of cutting tools for cutting thin stone veneer
1. Wet cutter
Using diamond blades, the continuous water cooling reduces the particles and dust ejected during the cutting process and also leaves the finish very clean.

2. Angle grinder with diamond blades
Suitable for small jobs, must use wet cutting attachment and requires a steady hand.

3. Professional stone cutting saw
Thin veneer stone saw is a highly efficient machine designed for precision cutting of thin natural stone slabs for wall decoration, interior and exterior renovation projects. Its lightweight construction with a diamond blade makes it easy to cut thin stone veneer flats and corners , ensuring Its lightweight construction with a diamond blade makes it easy to cut thin stone veneer flats and corners , ensuring flat edges and reducing material waste. It offers high precision cutting of thin layers of cleaved surfaces or natural finished blocks of granite, marble, sandstone, limestone or brick. Easy to operate, safe and durable, mighty thin veneer saw is ideal for the stone processing and construction industries.


Cutting Tips and Precautions:

Ensure the stone is firmly supported: use rubber mats to reduce vibration .
Keep blades sharp: dull blades increase the risk of cracking and should be replaced if more pressure is needed to cut or if the kerf becomes rough.
Control depth of cut: Cut no more than 1/3 of the blade diameter at a time .
Temperature management: Avoid overheating and pause to allow the blade to cool if necessary .
Cutting for special shapes: For curved or complex shapes, consider waterjet cutting.

Precautions for different stones:
Granite: harder, requires professional grade blades.
Marble: softer but more fragile and requires special care.
Limestone: highly porous, cuts best when wet.

Cutting thin stone veneer requires the right tools, technique and patience. thin stone veneer saw is the most reliable option, reducing material waste and ensuring cutting accuracy. Thin stone veneer saws are the most reliable choice, reducing material waste and ensuring accurate cuts, but even with an angle grinder, good results can be achieved if the right steps are followed. The key to cutting thin stone veneer is slow and steady.

What is The Difference Between Manual and Automatic Stone Polishing Machine?

2025-07-30

In the modern stone processing industry, stone polishing is a crucial process, which directly determines the gloss and beauty of the stone surface. There are two main polishing equipment on the market: manual polishing machine and automatic polishing machine. So, what exactly is the difference between these two types of equipment?

First, the work performance characteristics comparison
manual stone polishing machine:
manual polishing machine can be adapted to a variety of complex shapes and details processing, especially for deep holes, small grooves and other complex structures, manual operation is more flexible. However, the reliance on the operator’s experience and skills may lead to inconsistent polishing quality. Manual control of the polishing machine’s travelling path, pressure and speed is required. Usually hand-held or small bench-top machines, the polishing process is flexible but less efficient. Suitable for small batch, customised production. Relatively low cost.

Automatic Stone Polishing Machine:
Automatically operated by pre-set programmes or CNC system, it can accurately control the moving path, rotational speed and pressure of the polishing head. Mostly large-scale equipment, polishing process standardisation, high efficiency, reduce the cost of enterprise labour. Higher equipment costs and maintenance costs, suitable for standardised marble and granite plate batch processing of the production line.

Second, the choice of recommendations
Selected according to the output: daily output of less than 100 square metres can be considered manual, more than should choose automatic equipment

Consider the product type: regular flat stone is suitable for automatic polishing, shaped stone may need manual assistance.

Return on investment calculation: automatic equipment is expensive, but in the long run may be more cost-effective.

Evaluation of technical reserves: automatic equipment requires appropriate operation and maintenance personnel.

Future Development Considerations: If expansion is planned, automatic equipment is the more forward-looking option.

As technology advances, the two types of equipment are converging. Stone polishing machine is becoming more motorised and intelligent. Automatic equipment to add more flexible design, robot polishing system began to enter the market. Intelligent control systems can automatically recognise the type of stone and adjust parameters. Regardless of which equipment is chosen, keeping the equipment in good condition and using it correctly is the key to obtaining quality polishing results.

Tags